

Computational Clustering

Jesse Becker

Northwestern University
McCormick School of Engineering

3 October 2006
This talk is released under the Createive Commons
Attribution-nonCommercial-ShareAlike 2.5 License

Introduction

“Begin at the beginning,” the King said
gravely, “and go on till you come to the end:
then stop.”

--Lewis Carroll
Alice's Adventures in Wonderland

Me

● Work for the Engineering School at NU.
● Support for several computational research

groups (in addition to IT infrastructure)
– Molecular dynamics
– Complex systems
– Finite element Analysis

● Local Red Hat Network proxy
● On-campus software mirror
● Unix stuff...

Stuff in the queue

● Background / History
● Cluster planning and installation
● Using / Queuing

Types of clustering

● High Availablity
– Failover/redundancy
– Linux-HA project

● Load Leveling
– Focus on job throughput
– Good for workstations (Condor project)

● Beowulf clusters
– Complicated / big jobs
– What we're talking about today

Short history

● Supercomputing in the old days (pre-1994)
– IBM Mainframes
– Crays
– EXPENSIVE
– Gov't and Gov't related use

● Weather
● Nuclear weapons testing
● Scienctific simulations (physics!)
● Cryptography
● etc

Short history (cont.)

1993...
● Thomas Sterling and Donald Becker working at Goddard

Space Flight Center (MD).

● Idea for COTS system

– Cheap networking (Ethernet)

– Cheap Unix OS (Linux—DB wrote network drivers!)

...1994
● 16 node cluster online “Wiglaf”

– Speed demon: 66Mhz 486DX4 processors

– $40,000

History: recent past

● Whole industry developed.
● Rack mount hardware over workstations

– Workstations still around though...
● Cluster-in-a-box / turn-key systems
● Small clusters are “easy”
● Big clusters are hard (and expensive)

Current Clusters

Big Iron
● ASC Purple

– Sandia NL, 12,544
POWER5 chips, AIX, 7.5
MW of power, 16M BTUs

● Blue Gene/L

– IBM, 65k PPC CPUs,
AIX/Linux

● Thunderbird

– Sandia, 4512 Dell 1850s

Small...Aluminum(?)
● Hydra

– 32 node, dual 2.6GHz
Xeon, 2GB RAM/node

● Caramulo

– 28 node, dual 2.6GHz
Opteron, 4GB RAM/node

● Nutzy

– 4 node, 500Mhz PII

Current Clusters

● Super Computers ● Non-Super Computers

ASC Purple

Nutzy

Hydra and
Cusask

Preperation

Things to know pre-install

1.Understand your problem!
2.Know your code

• Memory
• Network
• CPU
• IO

3. 80% of time is spent in 20% of the code

Choices: Hardware

● Same hardware is nice
– “Similar” is okay.
– Mixed clusters are possible, but harder

● Need a good job scheduler

● Replacements
– Same hardware makes replacement easy

● Buy good hardware

CPU: AMD vs. Intel

AMD
● Better memory

bandwidth
(hypertransport)

● Cheaper (?)

Intel
● Faster raw number

crunching
● Limited memory

bandwidth (CPUs
shared bus)

Memory

● More memory == good
● Swap == very bad

– As soon as you start swapping, performance tanks

Disk

● Slowest part of the system (10-9 sec vs 10-3 sec)
● Slow IO can cripple a cluster
● RAID

– Absolutely required
– RAID 10 if possible
– RAID != backup

Network

● 2nd slowest part of the system
● GigE

– Cheap / Easy
– Latency is awful
– NIC / Switch makes a huge different

● Tune settings – Intel cards are good for this

● Inifiniband / Myrinet
– Better latency / bandwidth
– Double cost of a node
– Still need a management network...

Remote access

● KVM
– Very handy

● KVM over IP
– Expensive, but handy

● Serial console

Environmental

● Cooling
– 1-2 tons of AC/rack
– 6 tons for blades

● 1 ton = 12,000BTU

● Power
– 400W per node...32 nodes = 14KW...

● Security
● “Environmental” cost is half the total cost

Design...

● Network architecture
● IO systems / Storage

– Backups
● User management

– Resource limits
– Quotas (disk/CPU)
– Accounting

● Queuing

Installation!

Frontend

● Frontend / Head node / Management node
● Controls rest of the cluster

– User management
– Queue management

● Frequently has primary data storage
● Application exports

Frontend install issues

● Like a standard server install
● Base system

– Userspace tools
● Development stuff (gcc, gdb, icc)
● Editors, analysis tools, etc

– Shared applications (Matlab, MD, etc)
– Security (firewalls, private network, etc)

● Package updates?

● Storage (quotas)
● User accounts (resource access)

Compute Nodes

● Actually do the work
● Installs should be automated

– Or at least cloneable...
● Scalable install/configuration method is key.
● Config management after install?

– Cfengine, et al
– Do we care? Reinstall!

Compute Node Install Methods

● “Golden Master”
● Easy to create

cat /dev/hda > disk.img

● Hard to change
● What about different

hardware?

● Care about
configuration, not
specific files

● Hard to create
● Easy to manage
● Handles different

hardware

Image Installs Metadata Installs

Compute node install issues

● First few times are iterative
1. Configure

2. Install

3. Test

● Things to consider
● Partitoning
● Software packages / configuration
● System time
● Kernel settings
● User distribution?

ROCKs

ROCKS Cluster distribution

● From San Diego Supercomputing Center at
University of California at San Diego

● Full time staff (at least three)
● Built of CentOS
● Heavy use of kickstart installs (and RPM)
● Flexible
● Active mailing list and wiki
● Full MPI support, Intel compilers, other

goodies

ROCKS install

● Architechures: x86, x86_64, ia64
● Supports ethernet, Myrinet, Inifiniband
● Modest hardware requirements:

– Head node:
● 20GB disk
● ~800MB RAM
● 2 ethernet ports

Compute node
~6GB disk
512MB RAM
ethernet port

Customization

● Modular install using “Rolls”
● A few base rolls (kernel, OS, webserver, etc)
● Collection of semi-related packages
● Job-specific rolls

– Java
– Condor
– Bioinformatics
– Visualization

Cluster Administration

● Centralized user administration via 411
– 411 is a secure file distribution system
– Simpler than NIS, more resilient, scales better

● MySQL to store some information
● XML files to store compute node configs.
● Easy to change

– Add packages
– Set config files
– Kernel tuning

Example customizations

XML file (abbreviated)
<kickstart>
<description>
 extend-compute.xml: Local customizations to compute.xml
</description>

<package> subversion </package>
<package> fftw </package>
<package disable=”1”> sendmail </package>

<post>
 <file name="/etc/ntp.conf">
 restrict 10.1.1.1 mask 255.0.0.0
 broadcastclient
 authenticate no
 </file>

 chkconfig ntpd on

</post>
</kickstart>

Node installation

● Compute nodes boot off CDROM or PXE
● Fetch ks.cfg from head node via HTTP
● Starts anaconda (the redhat installer)

– Partitioning
– Installs RPM packages
– %post section

● Reboots
● (about 12 minutes)

Queueing

“Garbage in, garbage out.”

--Traditional
(maybe Charles Babbage)

Why do we need a queue?

● In a perfect world, don't need it

– Infinite resources
– People are nice

● In the real world...

– Resources are limited
– Lots of people want them
– People aren't nice

Queuing is a hard problem

● Can't make everyone happy all the time.
● Try to be equal and fair

– Some things are more equal than others
– Different purchase contributions
– Some projects more important than others

● Cheaters...

Parts of a queue (1/2)

● Scheduler

– Sorts the jobs
– Manages resource access / permissions
– Accounting
– What the users complain about.

● “why isn't my job running?”

Parts of a queue (2/2)

● Dispatcher

– Sends jobs to compute nodes
– Daemon on nodes
– Runs jobs
– Provides runtime environment

● LD_LIBRARY_PATH
● License file locations
● What about stdin, stdout, and stderr?

Queuing software

● Direct logins
– Bad idea

● atd/batch

– Probably installed, very basic
● GNU Queue

– Basic queuing, not as flexible as alternatives
● OpenPBS

– Common in .edu
● Sun Gridengine

– Best option?

Sun Grid Engine

● Open Source (but you can pay if you want)
● Handles scheduling, dispatching, accounting
● Under active development
● Runs on most Unix systems, and most architectures
● Scales to many thousands of jobs.

Using SGE

● All jobs are shell scripts
● SGE exports certain information (Job ID, hostname,

etc) to the job

● Use qsub to submit jobs

● Use qstat to check on job status

Questions?
(and links)

● http://www.phy.duke.edu/~rgb/Beowulf/beowulf.php
● http://www.beowulf.org/
● http://www.rocksclusters.org/
● http://gridengine.sunsource.net/
● http://www.samag.com/documents/s=8817

 /sam0313c/0313c.htm
● http://www.cs.wisc.edu/condor/
● http://oscar.openclustergroup.org/
● http://dirk.eddelbuettel.com/quantian.html

